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Using the theory of functions o f  a complex variable, in particular the method of 
conformal mapping, the irrotational and solenoidal flow in two-dimensional radial- 
flow pump and turbine impellers fitted with equiangular blades is analysed. Exact 
solutions are given for the fluid velocity along straight radial pump and turbine 
impeller blades, while for logarithmic spiral pump impeller blades solutions are given 
which hold asymptotically as ( r l / r J n + O ,  in which rl is impeller inner radius, r2 is 
impeller outer radius and n is the number of blades. Both solutions are given in 
terms of a Fourier series. with the Fourier coefficients being given by the (Gauss) 
hypergeometric function and the beta function respectively. The solutions are used to 
derive analytical expressions for a number of parameters which are important for 
practical design of radial turbomachinery, and which reflect the two-dimensional 
nature of the flow field. Parameters include rotational slip of the flow leaving radial 
impellers, conditions to avoid reverse flow between impeller blades, and conditions for 
shockless flow at impeller entry, with the number of blades and blade curvature as 
variables. Furthermore, analytical extensions to classical one-dimensional Eulerian- 
based expressions for developed head of pumps and delivered work of turbines are 
given. 

1. Introduction 
Computing the two-dimensional potential flow in radial-flow impellers, in particular 

by using the theory of functions of a complex variable, is not a recent development but 
has been done by a number of  notable authors since the early years of this century. It 
was Kucharski (1918) who pioneered this field of fluid dynamics by thoroughly 
examining the flow field of a simplified impeller fitted with straight radial blades with 
the inner tip placed at the centre of the impeller. Spannhake (1925a, b, 1930) presented 
improvements by taking a more realistic inlet-to-outlet radius for the impeller, and 
introduced the method of conformal mapping to solve the flow problem. Employing 
the method of conformal mapping Sorensen (1927), Busemann (1928), and Schulz 
(1928 a, b)  treated the impeller with logarithmic spiral blades. Here Schulz developed 
and subsequently used a rather dubious alternative mapping, in that it violated the 
conservation of flux and circulation. Sorensen and Busemann based their study 
correctly on the work of Konig (1922). Uchimaru & Kito (1931) unfortunately applied 
the (questionable) results of Schulz to compute slip coefficients. Acosta (1954) extended 
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the work of Busemann by computing the pressure distribution along the blades, and 
compared the results with experiments. Ayyubi & Rao (1971), and Mohana Kumar & 
Rao (1977) used Acosta’s work as reference and developed similar results by using a 
distribution of elementary singularities on the blade surfaces. 

The above-mentioned authors all contributed significantly to the solution of the 
potential flow problem in two-dimensional radial-flow impellers. However, results 
were mostly obtained by numerical evaluation and computation; solutions in closed 
form were limited to special cases only (Kucharski 1918; Spannhake 1925a). This 
situation is improved by the results of the present paper, that is solutions in closed form 
are given for a number of important flow parameters which determine the performance 
of (two-dimensional) radial-flow impellers with equiangular blades. The results given 
provide an extension to formulae commonly applied at the preliminary design stage in 
the engineering of radial turbomachinery, such formulae being largely based on the 
application of one-dimensional Eulerian flow theory. Furthermore, the presented 
solutions can serve as a practical and meaningful reference for numerical methods used 
for complex, two- and quasi-three-dimensional, potential flow calculations (see for 
instance Badie 1993). 

2. Formulation 
A single-stage turbomachine, or one stage of a multistage turbomachine, may be 

considered to be composed of three main parts : a stationary inlet or guidance system, 
the runner or impeller, and an outlet or collecting device. Since the impeller is 
responsible for the energy transfer, it seems clear that this component should be our 
first item of interest. Thus confining our attention to the flow field in isolated impellers, 
it would be highly desirable to be able to predict the developed head or the delivered 
work, and to determine the fluid velocity and the pressure distribution along the blades. 
This, however, is in general not feasible due to the behaviour of real fluids, and the 
complex geometries of impellers found in practice. Therefore the flow problem has to 
be simplified, leaving the essentials intact, so that practical solutions can be obtained. 

The first assumption is that the fluid may be considered incompressible when dealing 
with pumps, fans, and hydraulic turbines. Secondly, the importance of the viscous 
forces compared to the non-viscous (inertia) forces acting on the fluid will be very 
small, so that the bulk of the fluid may be considered inviscid. The third assumption, 
usually implicitly made, is that the flow enters the impeller free from vorticity, so that 
the flow field may be characterized mathematically as irrotational and solenoidal 
taking into account the former two assumptions. The last assumption is that the flow 
field may be considered two-dimensional, that is the flow is restricted to depend on 
radial and angular coordinates only. This is a reasonable assumption for numerous 
radial-flow turbomachines, having - a  low specific speed (see for- instance Pfleiderer 
1991). 

The above-mentioned assumptions make it possible to use two-dimensional methods 
of potential flow theory, in particular the theory of functions of a complex variable, to 
compute the flow in radial-flow impellers. We additionally adopt equiangular blades, 
that is blades having a constant angle between radius and tangent. These blades are not 
only mathematically convenient, but also highly representative since most blade 
designs in practice are closely represented by equiangular blades. Furthermore, the 
analysis will be restricted to thin blades, that is blades with zero thickness. 

So, in brief, the impellers considered are isolated, two-dimensional, of the radial-flow 
type, and consist of a finite number of negligibly thin, equally spaced, equiangular 
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FIGURE 1. Two-dimensional radial-flow impellers. (a) Straight radial blades (/3 = 0); 
(b) logarithmic spiral blades with = in. 

blades. The coinciding upper (+) and lower (-) blade surfaces of such impellers (see 
figure 1) are characterized mathematically by 

Y - d$ = tan (,8) = constant, 
dr 

where r is radial distance and Q is polar angle. The blade angle p is constant for all radii 
and is taken counterclockwise positive (where 0 < /3 < in). The direction of revolution 
of the impeller, rotating with angular speed 0, can be either clockwise (i.e. 0 < 0) 
or counterclockwise (i.e. G? > 0),  representing backward or forward curvature 
respectively. 

Integration of (2.1) yields that equiangularly bladed impellers are described by e.g. 

in which y1 is the number of blades,j is the blade index { j ~  N 1 1 < j < n), QOl is the offset 
angle, namely r$ol = $l(rZ), r2 is the outer tip radius, and r1 < r < r2 where rl  is the inner 
tip radius. 

For /5’ + 0 we generally speak of logarithmic spiral blades (see figure 1 h), whereas 
straight radial blades are characterized by a blade angle equal to zero. Putting p = 0 
in (2.2) we obtain that straight radial blades are described by 

j -  1 
n 

y9 = Qo1+2n---. 

Next, for the flow field in the impeller, which is considered two-dimensional, inertially 
irrotational, and solenoidal, a velocity potential and a stream function $ can be 
defined, as is customary in general fluid dynamics, see for instance Batchelor (1967) or 
Lamb (1932). The complex potential (‘p+i$) associated with this flow will be denoted 
by f (z)  where z = x+iy, with x and y referring to non-rotating Cartesian (.x,y)- 
coordinates, and, hence, 

(2.5) 
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where zi, and uy are the (absolute) velocity components in the x- and y-directions. 
Furthermore, for convenience in algebraic manipulation, we will distinguish the 
following potentials : 

(a) A potentialf, due to the rotation of the impeller. This flow will be referred to 
as displacement flow. 

(b) A potentialfQ representing the volume flow rate through the impeller, which is 
incorporated by a source placed at the centre of the impeller; for turbines the source 
will have a negative strength. 

(c) A potential .fr related to a rectilinear vortex placed at the centre of the impeller. 
This vortex represents either a prerotation by which we can impose shockless entry for 
pump impellers, or merely the circulation of the flow leaving turbine impellers. 

( d )  A potential f ,  for the imposition of the Kutta condition (or Zhukovski’s 
hypothesis). This condition, being set by the effect of viscosity, expresses the physical 
fact that there is a smooth flow off both surfaces of the impeller blades at the trailing 
edge. 

3. Method of solution 
To solve the flow field, in particular the fluid velocity along the blades, we will 

employ a conformal transformation which maps the impeller on the unit circle. In the 
circle plane we can easily determine the previously mentioned sub-flows, by using the 
theory of functions of a complex variable. 

The mapping function is originally credited to Konig (1922), and originates from the 
transformation of a plane source-vortex flow to a source-vortex flow in a circle plane, 
see also Acosta (1954), Betz (1964, pp. 245-255), or Busemann (1928). Denoting the 
physical plane by z and the image plane by p and placing the centre of the impeller at 
the origin in z = 0, we can state the transformation <: z + g, which maps the impeller 
conforinally on the unit circle, as 

in which lo = c(0) and c2 = {(zz), with z2 being the complex representation of the outer 
blade tip in the physical plane, and where the overbar denotes the complex conjugate. 

An alternative transformation which maps the impeller on the unit circle is due to 
Schulz (1928 a, 6). Schulz’ transformation, employed also by Uchimaru & Kito (1931), 
may be written as 

\ 

This transformation partially resembles transformation (3.1) and, moreover, is 
relatively simple. Unfortunately, transformation (3.2) violates the conservation of flux 
and circulation, and therefore it is unsuited for solving the irrotational and solenoidal 
flow field; the physical nature of sources and vortices is affected illegally by 
transformation (3.2), that is sources and vortices are both transformed in vortex- 
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z-plane c-plane 

FIGURE 2. Mapping of eight straight radial blades. 

sources. In fact, this is a rather logical consequence of Schulz’ approach, because 
Schulz transforms a plane vortex-source flow to a source flow in the circle plane. 
Transformation (3.1) is the proper one to use. 

Mapping the impeller according to transformation (3.1) we still have a degree of 
freedom left, namely the exact location of the image Q of the origin ( z  = 0) of the 
physical plane. This image c0 may either be taken freely, or it may be derived from a 
chosen image Q. The latter will be done for both straight radial blades and logarithmic 
spiral blades. 

3.1. Mapping function for  straight radial blades Cfigure 2) 
Putting p = 0, choosing the image of the outer blade tip in 5, = I ,  and employing the 
fact that the blade tips are branch points of the transformation, which implies 
Idz/dcl,l, = 0, it follows from (3.1) that the inner blade tip is mapped in = - 1, and 
that the image of the origin ( z  = 0) lies somewhere on the negative real axis, say 
&-, = -a with a€@,  see also Betz (1964, pp. 123-131) or Spannhake (1925a, 1930). 
The mapping function (3.1) then becomes 

Next, defining 

and taking into account that the physical plane is mapped outside the unit circle, so 
that a > 1, it follows that 

For points on a blade, i.e. 5 = eiH and z = r ei@, the mapping function (3.3) becomes 

a = (1 +,$)/(I -pi). (3.5) 

where we have introduced a dimensionless radius 

which will be used frequently henceforth. 
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z-plane {-plane 

FIGURE 3. Mapping of eight logarithmic spiral blades with /I = fn. 

3.2. Mapping function for logarithmic spiral blades (jigure 3) 
Putting c0 = a eU in transformation (3.1), choosing again c2 = 1, and employing the 
fact that the blade tips are branch points of the transformation, it follows that, see also 
Acosta (1954) or Busemann (1928), 

a = sin @)/sin (S+ P) (3-8) 

and that the argument (8) of c0 is given implicitly by 

The mapping constants a and 6, as given by (3.8) and (3.9), are rather awkward to 
compute. However, since ,u 4 1 for most impellers found in practice (e.g. rl = 37 mm, 
r2 = 100 mm, and n = 8 blades gives p = 3.5 x we may employ a simple 
approximation. Physically, this approximation embodies small blade space-chord 
ratios. 

From (3.9) it follows that 6 - x - 2 P  asp+ 0, taking into account that a 2 1 in (3.8). 
Hence we put 

s =  71-2p+e, (3.10) 

in which e - 0 as p+O. Then substituting (3.10) in (3.8) and (3.9) we obtain 

a - 1 +&cotan@), (3.11) 

as p u 0 .  
Equations (3.10), (3.11), and (3.12) provide a simple algorithm to compute the 

mapping constants, a and 6, asymptotically as p +- 0. 
Lastly, as a special and highly representative case, the limiting value p + 0 will be 

considered; here we will confine ourselves to the mapping of points located on a blade, 
which are represented by (2.2) and (2.3). For these points transformation (3.1) may be 
stated alternatively as, see also Busemann (1928), 
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in which 

Then, with a - 1 and 8 - n - 2/3 as p + 0 mapping function (3.13) becomes 

(3.14) 

(3.15) 

as p --f 0, which is valid for - n - 2p  d 8 < n - 2/3 and 0 < /3 < +R. Equation (3.15), like 
(3.6) being appropriate for straight radial blades, formulates the mapping of points 
located on logarithmic spiral blades explicitly. Consequently, it is possible to obtain 
solutions in closed form for the flow problem considered. In particular, the fluid 
velocity along impeller blades can be solved elegantly in closed form. 

4. Flow along the blades 
Since important impeller characteristics, such as developed head and delivered work, 

can be obtained directly from the description of the tangential flow along the blades, 
our attention will be confined to this flow; a full description, with the aid of solutions 
in closed form, of the complete flow between the blades is most unlikely to be found 
because of its complexity. Descriptions of the individual contributions to the tangential 
velocity along the impeller blades will be derived from the corresponding descriptions 
of the sub-flows in the circle plane or [-plane. 

4.1. Displacement flow 
With reference to figure 4 it follows that the fluid velocity tangential at the blades, due 
to the displacement flow, is given by Poisson's (principal value) integral, see for 
instance Betz (1964, p. 167) or Moretti (1964, pp. 280-281) 

in which the subscripts n and t denote the normal and tangential parts respectively, and 
where [ refers to the [-plane; the superscript D is added to denote the displacement 
flow. 

The normal velocity vf5 in (4.1) follows from the transformation 

in which the normal velocity ofz is prescribed by the physical fact that, at the blades, 
the relative fluid velocity normal to the blades equals zero. By this boundary condition 
it follows that 

U E Z  = (52 x r ) - n ,  (4.3) 

where 52 is angular speed of the impeller, r is the position vector for blade-located 
points, and n is the unit normal of the blade(s). In two dimensions and for equiangular 
blades (4.3) yields 

(4.4) 

in which D = 1521, r = Irl, and where the sign (f ) depends on the side of the blade, that 
is, (+) for upper and (-) for lower blade surfaces, due to the changing of n. 

ufZ = (+) SZr cos Go> 
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FIGURE 4. Fluid velocities along the unit circle in the <-plane. 

By some geometrical manipulations it further follows that the derivative of the 
mapping for points located on equiangular blades may be written as 

the sign (i) again depending on the side of the blade. Substituting this result and (4.4) 
in (4.2) we get, employing the dimensionless radius R(0) = r(0) /r2,  

(4.6) 
dR 
d8 

U f @ )  = -QriR(B)--. 

Then, substituting (4.6) in (4.1) we obtain that the fluid velocity along the unit circle, 
due to the revolution of the impeller, is given by 

The transformation 

then gives the corresponding (tangential) fluid velocity in the physical plane. 

4.2. Source flow 
Placing a fluid source of strength Q/n in the c-plane at 5 = c0, which corresponds with 
a fluid source of strength Q located at the centre of the z-plane, yields the potential 
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Applying the circle theorem of Milne-Thomson (1958) we impose the boundary 
condition that the unit circle has to be a streamline, and obtain from (4.9) 

(4.10) 

where the asterisk is added for clarity. Next taking the derivative of (4.10) with respect 
to <, substituting c = eiH and co = a ei', and using the identity 

v,;(O) - iu,,(O) = e-iH(u,S(0) - iu,dO)) (4.11) 

we get the normal and tangential parts of the fluid velocity along the unit circle due to 
the source, i.e. 

v,"S(O) = 0, (4.12) 

Q asin(8-8) 
u@) = - 

nn 1 +a2-2acos(B-8)' 
(4.13) 

Equation (4.12) confirms that the boundary condition is imposed properly. The 
tangential fluid velocity ( u z )  in the physical plane again follows from transformation 
(4.8). 

4.3. Vortexjow 
Placing a rectilinear vortex of strength r , / n  in the <-plane at < = c0 yields the potential 

fA8 = , , W - < o ) .  r1 (4.14) 

Applying the circle theorem, (4.14) gives 

(4.15) 

Next taking the derivative of (4.15) with respect to c. substituting y = eis and co = a eis, 
and using identity (4.11) we find that the normal and tangential parts of the fluid 
velocity along the unit circle due to the vortex are given by 

vf@ = 0, (4.16) 

(4.17) 

Again it is seen that the boundary condition is imposed properly. The tangential fluid 
velocity (&) in the physical plane again follows from transformation (4.8). 

4.4. Kutta condition or Zhukovski's hypothesis 
The last sub-flow to be discussed is related to the Kutta condition, also known as 
Zhukovski's hypothesis, which implies the elimination of the singular behaviour of the 
fluid velocity at the trailing edge of a blade. This is done by superposing a rectilinear 
vortex of strength r, at the origin of the <-plane. This additional flow satisfies both the 
potential equation and the boundary condition that the unit circle is a streamline; the 
potential reads 

where r, is the blade circulation, which is (to be) determined by the Kutta condition, 
and K refers to the Kutta condition. 
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Taking the derivative of (4.18) with respect to <, substituting < = eio, and using 
identity (4.1 l), gives the normal and tangential parts of the fluid velocity along the unit 
circle due to the additional vortex r,, i.e. 

(4.19) 

(4.20) 

Now by simply requiring a zero (overall) fluid velocity at the trailing edge in the c-plane 
we impose the Kutta condition. This method will be valid if the decrease of the fluid 
velocity exceeds the increase of the derivative (d</dz) of the mapping near the trailing 
edge. 

When imposing the Kutta condition we have to distinguish pumps from turbines 
because the trailing edges of radial pump impellers lie at the outer radius whereas 
inward-flow radial turbine impellers have trailing edges at the inner radius. 

Imposing the Kutta condition at the outer tip (i.e. 8 = 0) yields the relation 

?&0) + u$(0) +,;do) + u g  = 0. (4.21) 

Substituting (4.20) in (4.21) we obtain that the blade circulation (rbP) for pump 
impellers is given by 

r,, = - 2423~d0) + u;(o) + u~do)). (4.22) 

Imposing the Kutta condition at the inner tip (0 = 8,) we analogously obtain for the 
blade circulation (r,J of turbine impellers 

r,, = - 2z(u@,) 4- 2/’5p,) + z.’@1)). (4.23) 

When turbines are considered, the inner circulation is not prescribed, as it is for 
pumps, but instead the outer circulation r, is prescribed. Both circulations are simply 
related by 

r, = rl+ c r j ,  (4.24) 

where we have omitted the subscripts p (pump) and t (turbine) since (4.24) is 
universally valid. Alternatively, recalling that we are dealing with isolated impellers, 
having blade-to-blade-equivalent blade circulations due to the periodicity of the flow, 
(4.24) may also be stated as 

r, = r, + n r b .  (4.25) 

n 

j=1 

4.5. Condition ojshockless entry 
After imposing the Kutta condition still another singularity remains, namely the one 
at the leading edge of the blades. Analogous to the imposition of the Kutta condition 
this singularity can be eliminated, in this case by a proper choice of the prerotation. 
This is generally known as (imposing) the condition of shockless entry. This condition 
of shockless entry is strictly an operating condition, whereas the Kutta condition is a 
physical fact. From a mathematical point of view, however, both conditions are alike. 

When imposing this condition a distinction has again to be made between radial 
pump impellers and inward-flow radial turbine impellers because of the transposition 
of the leading edge. 

For pump impellers, i.e. the inner tip (0 = 8,) as leading edge, the condition of 
shockless entry yields the relation 

(4.26) u;(oI) + u,&i(O,) + ufr(H1> + u; = 0. 
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Substituting (4.20) in (4.26) and using (4.22) then gives 

v$(0,) -$do) + v,Qs(0,) -@do) + v@,) - U G ( 0 )  = 0. (4.27) 

Equation (4.27) fully determines the prerotation TI, of the flow entering pump 
impellers, such that a shockless entry is obtained. 

For turbine impellers, i.e. the outer tip (0 = 0) as leading edge, the condition of 
shockless entry yields the relation 

,$(O) + ZjgO) + Z & ~ O )  + U; = 0. (4.28) 

Substituting (4.20) in (4.28), and using (4.23) we obtain (4.27) again. This equation 
indirectly determines the shockless prerotation r2, for turbine impellers. Having solved 
TI from (4.27) the prerotation r,, is next obtained using (4.24). 

5. Solutions in closed form for radially bladed pump and turbine impellers 
In this section our attention will be confined to the case of straight radial blades. 

Solutions in closed form for both pump and turbine impellers will be presented, having 
outlined the universal solutions first. 

Putting p =  0, 6 = n, and using (3.5) and (3 .6) ,  we obtain from (4.7), (4.13), and 
(4.17) 

in which 

r, cos(0)+(1 -pi)/(l +pi) 
v@) = 27cn cos(0)+(l +p)/(l-p) ’ (5.3) 

(5.4) 

Equations (5.2) and (5.3) are both simple expressions that need no further explanation. 
Equation (5. l),  however, deserves some further attention. First, substituting the 
trigonometric identity 

sin (A) + sin (0) 
cotan(+O-;h) = 

cos (A) - cos (0) 

and taking into account that the trigonometric function 

(1 +% COS (A)  )-‘+‘in sin (A) sin (0) 
cos (A )  - cos (8) 

is an odd function of A, we may write (5.1) as 

sin2(h) -I+a;n ) cos(A)-cos(0) dh. (5.7) 

Then employing some elementary trigonometrical manipulations we can rephrase (5.7) 
as 

ofdo) = K 2xn (sin2 (0) I(@) + (1 - cos (8)) - I J ,  (5.8) 
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in which 
dh 

co s (A)  - cos (0) ' (5.9) 

(5.1 1) 

Equation (5.8) is a mathematically convenient simplification, as will be demonstrated 
shortly hereafter. The integrals 1, and 1, can both be expressed elegantly by a rather 
familiar special function, namely the (Gauss) hypergeometric function or series. The 
equivalents of the integrals (5.10) and (5.1 1) read (see also Gradshteyn & Ryzhik 1980, 
pp. 389, 384) 

(5.12) Z, = 2~(:(1 + P ) ) ~ - ' / ~  F 

where F( -) = 2<( -) represents the (Gauss) hypergeometric function; see for instance 
Whittaker & Watson (1927). 

To evaluate the integral Z(0) we expand the leading part of integral (5.9) in a Fourier 
cosine series. The Fourier expansion reads 

where the coefficients of the series are defined by 

(5.14) 

(5.15) 

Then substituting (5.14) in (5.9), and using the following principle value integral 
(Milne-Thomson 1958, p. 80) well-known in aerodynamics : 

we obtain 

2x 
sin (k0) 

cos (kh) 
dh  = ~ 

(0) sin(@ 

2x 
I(0) = C A ,  sin (k0). 

sin (0) y-l 

(5.16) 

(5.17) 

Furthermore, the Fourier coefficients (5.15) can be expressed by the hypergeometric 
function. It follows that (see also Gradshteyn & Ryzhik 1980, p. 384) 

(5.18) A ,  = ph(1 + p ) 1 - 2 / n  (1 +';)-4/n @;)-1+4/% 

Finally, substituting (5.12), (5.13) and (5.17) in (5.8), and using (5.18), we obtain 
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Equation (5.20) gives the solution in closed form for the fluid velocity, tangential at the 
unit circle in the [-plane, due to the rotation of the impeller. Summing the individual 
contributions (5.2), (5.3), and (5.20) we get the overall velocity in the c-plane. The 
corresponding velocity in the physical plane is readily obtained by transformation 
(4.Q which becomes for straight radial blades (i.e. /3 = 0) 

(5.21) 

where R(0) is given by (3 .6) .  

5.1. Solutions for pump impellers 
From (4.22), (5.2), (5.3), and (5.20) we readily obtain that the blade circulation for 
pump impellers fitted with straight radial blades is given by 

where 1 crpR = %( 1 - 
2 

p ) F  ;, 1--;2; 1- 
( n  

(5.22) 

(5.23) 

crpr = 1 -pi. (5.24) 

The dimensionless factors crpD and crpr are generally known as slip factors. The 
respective subscripts employed, refer to pump impellers (p ) ,  displacement flow (a) and 
vortex flow (0. By definition slip factors are always positive and less than 1. They 
express that the flow is influenced imperfectly due to the finite number of blades; the 
fluid is said to slip. 

Slip factor crpD is commonly mentioned in many text-books or papers on 
turbomachinery. It represents the rotational slip of the flow due to imperfect guidance 
of the blades. Slip factor crpD however, is hardly ever found in the (turbomachine) 
literature. It represents the slip of the flow leaving pump impellers due to the 
prerotation at impeller entrance. Both slip factors as well as the concept of slip factors 
will be further discussed in $7. 

Next summing (4.20), (5.2), (5.3), and (5.20), and using (5.22), we obtain the overall 
velocity along the unit circle in the <-plane for the pump impeller: 

Then employing transformation (5.2 I), and using the auxiliary relations (straight 
radial blades only) u& = - w, and vt, = + w,, where the superscripts (+) and (-) refer 
to the upper and lower blade surfaces respectively, we get 

w,, = 

in which w,, is the outward-directed, relative, radial fluid velocity at the blades of the 
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FIGURE 5. Exact solution of fluid velocities along straight radial blades of eight-bladed pump 
impellers with inlet-to-outlet radius ratio of 0.37 (@r,l = 0.319; T,? = 0.214). ( ( I )  Zero volume flow rate 
and zero prerotation; (b) zero volume flow rate and shocklcss entry; (c) minimum volume flow rate 
and zero prerotation: (d)  minimum volume flow rate and shockless entry. 

pump impeller, and r(e) = r ,  R(B) as given by (3.7). For convenience we may rephrase 
(5.26) in a dimensionless form as 

where we have introduced a flow coefficient @ = Q/(27csZr3, and a vortex coefficient 
Yl = T'1/(27cs2~3; both coefficients @ and Yl may be chosen at will, though the 
following points should be noted. 

Firstly, the flow coefficient @, i.e. the throughput in proportion to the rotational 
speed, should be large enough so that the relative fluid velocity along the impeller 
blades will be strictly positive, that is w t P  3 0. In that case we will not need to take into 
account the occurrence of reverse flow (i.e. wrP < 0), which may have a negative 
influence on the performance of pump impellers. 



Irrotational and solenoidal j l o ~ :  in pump and turbine impellers 121 

f 
c: 
P 
Y 

FIGURE 6. Displacement-flow fluid velocity along straight radial blades as p 20. 

Secondly, the vortex coefficient Y, should preferably be chosen such that a shockless 
entry is obtained, so that impact losses are reduced to a minimum. From (4.27), (5.2), 
(5.3), and (5.25), putting 0, = n, it follows that the prerotation (I-‘,,) required to obtain 
a shockless entry equals 

r,, = r1,2d2r; (5.28) 
or, in dimensionless form, 

y,, = T p ,  (5.29) 

where we have introduced the prerotation factor T~ for pump impellers, which reads 
(for straight radial blades) 

(5.30) 

Like the slip factor the prerotation factor is also dimensionless, but larger than 1. 
Both the flow coefficient minimally required to avoid reverse flow, and the 

prerotation (factor) required for shockless entry will be discussed in greater detail in $7. 
To illustrate (5.27) we have plotted in figure 5 the dimensionless fluid velocity 

wrp/(i2ra) for zero and minimum throughput, both with zero prerotation and shockless 
entry, for pump impellers with eight straight radial blades and inlet-to-outlet radius 
ratio r , / r 2  = 0.37. For convenience we here have introduced a dimensionless blade 
coordinate SE [0,1], defined by s = ( r -  rl)/(r2 - r,) = (R(8) - r 1 / r 2 ) / (  I - r1 / r2 ) .  

Furthermore, we have plotted in figure 6 the asymptotic solution for the displacement 
flow velocity along straight radial blades as p + 0. This solution, i.e. the asymptotic 
expansion of (5.27), reads 

as ,LL + 0, in which r( -) represents the well-known (complete) gamma function, and 
where R(0) - cos2’” ($3) as , u + O  which readily follows from (3.6), or (3.15) putting 
p =  0. 
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Figure 6 clearly demonstrates that the displacement flow velocity decreases as the 
number of blades increases. Moreover, since l/(r(l -k))  = OVkE:N+, it is seen from 
(5.31) that 

(5.32 a) 

as n t co, complying fully with one-dimensional Eulerian flow theory. Also, note that 
the series in (5.31) terminates for n = 1 and n = 2 after two terms and one term 
respectively . 

Furthermore, it is seen from (5.31) that, for @ = 0, 

lim w,?, 1 1’“ when when n n = l  = 2 (5.32 b) 

as p +. 0, which can also be observed from figure 6. But, nonetheless, we still have for 
all blade numbers, for @ + 0, 

R+o Or2 4-0 - 1; when > 2 

. W r p  lim- - + co 
R-+O 

(5.32~) 

as p+O. 
5.2. Solutions for iurbine inzpeIIers 

From (4.23), (5.2), (5.3), and (5.20), putting O1 = n and using (4.25) we obtain that the 
blade circulation for turbine impellers fitted with straight radial blades reads 

nT,, = g t J z  - atn 2nOr;, (5.33) 

utr = 1 -p;, (5.34) 

where the slip factors introduced are 

(5.35) 
Note that vtr = vpr and vta = (1 - p ) ~ ~ - p ~ - ~ / ~  gpn. 

Next, summing (4.20), (5.2), (5.3), and (5.20), and using (5.33) we get the overall fluid 
velocity in the c-plane : 

Then using transformation (5.21) we obtain, analogously to the solution for the pump 
impeller, that the radial fluid velocity wrt at the blades of the turbine impcller is given 
by 
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In dimensionless form this yields 

33 

x C aksin(kB)-~cotan(~8)F { k = l  

The vortex strength rl 

which readily follows 
becomes 

in (5.37) and Yl in (5.38) are prescribed by 

r1 = (1 - at,) I', + atD 2xOr;, (5.39) 

from (4.25) and (5.33); using dimensionless groups (5.39) 

Y, = g t D  + (1 - a,,) p 2 / n  Y2, (5.40) 
where Yz = r2/(27cOr3. 

Substituting (5.40) in (5.38) we get, using (5.34) 

The prerotation (I'zs) required for shockless entry follows from (4.25), (4.27), (5.2), 
(5.3), and (5.20). It reads 

I',, = rt 2xSZri (5.42) 
or, using dimensionless groups, 

where the (turbine) prerotation factor is given by 

y2, = rt, (5.43) 

+-( p ) F  
t 1 +p 2 .) ' inF(2,2; n n l + p  1- ( n 

This prerotation factor will be further outlined in $7,  there we will also discuss the 
minimally required throughput, that is, the minimum flow coefficient (Qm),  for turbine 
impellers. Incidentally, note that r, = p i + 2 i n ~ p  + gpo. 

To complete this section, we will demonstrate similarity between the flow fields for 
pump and turbine impellers. Both from (5.271, which is valid for pump impellers, and 
(5.38), which is valid for turbine impellers, it follows that the relative fluid velocity w, 
along straight radial blades of either pump or turbine impellers operating under the 
condition of shockless entry, i.e. Y, = r p  and Y2 = rt for pump and turbine impellers 
respectively, is given in closed form by 

where the blade radius ratio, R(B), and the Fourier coefficients, ak, are as given before 
by (3.6) and (5.19) respectively. 

Note from (5.45) that at the blade tips (i.e. B =  0 and 8 = x) we have that 
R(B)w,/(Or,) = @; the disturbance due to the rotation of the impeller vanishes 
completely at the blade tips. 
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FIGUKE 7. Exact solution of fluid velocities along straight radial blades of eight-bladed turbine 
impellers with inlet-to-outlet radius ratio of 0.37 (@ = -0.319; Yzb = 0.765). (a) Low prerotation 
(r, = 0.9 Y2J; (b) shockless prerotation (Y, = Y2J; (c) high prerotation ( Y, = 1.1 YzJ. 

w,.,/(Qr,) for three distinct values of the prerotation, namely 90 YO of the value required 
for shockless entry, the value appropriate for shockless entry itself, and 110 % of the 
value corresponding to shockless entry, all with the same volume flow rate (namely 
@ = -0.319). 

6. Asymptotic solutions for logarithmically bladed pump impellers 
In this section pump impellers only will be considered, mainly because solutions in 

closed form have not yet been obtained for turbine impellers that are fitted with curved 
blades. This is not of major importance since most radial turbine impellers found in 
practice have straight radial blades - discussed in detail in the previous section - or are 
closely represented by these blades, in particular at the entrance section. In fact, blade 
curvature in radial turbomachines is more commonly applied to pumps and fans. 

The solutions presented here give an account of the fluid velocity tangential at the 
blades of pump impellers fitted with logarithmical spiral blades having a low inlet-to- 
outlet radius ratio ; that is, for the case in which the approximation ,u = ( r l / r J a  + 0 is 
justified. 

6.1. Solutions Jiom the method of conformal mapping 
Analogously to the mathematical treatment given in $ 5  we are also able to solve the 
case of logarithmically bladed pump impellers as ,u + 0. We will briefly outline the 
results. 

t Details of the mathematical manipulations involved are lodged in the JFM office. Anyone 
i&ihi~g io %T tilt- ik iii-i&d it3 m+ic to ilre Editor. 
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First, it is found that the blade circulation of logarithmically bladed pump impellers 
is given by 

as ,u -+ 0, where the slip factor reads 

nr,, - crpn 2xSZri + (2 tan (p) - r, 

e-2flsin (2fl)i n 

as ,u + 0, in which B( -) is beta function (see for instance Abramowitz & Stegun 1972), 
and where 

(6.3) 

Note that x is a complex number; the beta function B ( x , ~ ) ) ,  however, is strictly real 
valued. The slip factor (6.2) will be further discussed in $7. 

Then, taking the blade circulation in accordance with (6.1), it follows that the 
outwardly directed relative fluid velocity (w,,) tangential at the blades of log- 
arithmically bladed pump impellers is given by, employing a dimensionless notation, 

2 cos2 (p) . sin (2p) 
n 

x = 1 +  +I-. 

as p u 0 ,  in which @ is the flow coefficient and R(0) is the dimensionless radius, as 
introduced before, and where the Fourier coefficients B, and C, are conveniently given 
as the real and the imaginary parts of the right-hand side of 

in which 
2 cosz @) . sin (2p) 

X y )  = 1 + k +  -1-, 
n n 

(6.7) 
2 cos2 (p) sin (2p) 

= 1-k+ +i-. 
n n 

Note that (6.4) readily reduces to (5.31) for the case of straight radial blades (i.e. 

Based on (6.4) we have plotted in figure 8 the relative fluid velocity (w,,) due to the 
rotational speed, that is at zero throughput (i.e. @ = 0), for several eight-bladed pump 
impellers. The graphs of this figure are appropriate for both backwardly (i.e. 52 < 0) 
and forwardly (i.e. SZ > 0) curved blades. The figure clearly shows that the displacement 
flow velocity diminishes as the blade angle increases. This, and other features, will be 
discussed further in $7. 

p = 0). 

6.2. Solutions from the asymptotic expansion of the Poisson equation 
In addition to the previous section, we shall briefly outline the asymptotic behav- 
iour of the solution for the relative fluid velocity for small blade space-chord 
ratio impellers. In particular the behaviour in a region located remotely, i.e. 

5 FLM 269 
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(1 + (27t cos ($) /n) )  rl < r < (1 - (27t cos ($)/n)) r2 with n/cos co> sufficiently large, bet- 
ween the blade tips of logarithmically bladed impellers will be evaluated. To that end 
we will consider the Laplacian of the stream function for the relative flow. Unlike the 
absolute flow, this flow is stationary, and, hence, it is easier to describe than the 
absolute flow, which is periodical. It will be demonstrated that the asymptotic solution 
to be given here and the one previously discussed have a striking resemblance. 

Denoting the relative stream function by K ,  it is found that (see for instance 
Kucharski 1918, p. 73 or Vavra 1960, p. 226) 

v 2 K  = 252. (6.8) 

Solving this Poisson equation asymptotically? it follows that the tangential relative 

t Details of the mathematical manipulations involved are lodged in the JFM office. Anyone 
wishing to see the details is invited to write to the Editor. 
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fluid velocity (w,) along logarithmic spiral blades, in a region located remotely between 
the blade tips is given in dimensionless form by 

for the upper blade surface, and 

(6.10) 

for the lower blade surface as ,u+ 0, in which R = r / r z  and t = x sin (2/?)/n. 
Solutions (6.9) and (6.10) agree perfectly with solution (6.4) for r 4 r2 (i.e. R < I), 

which was illustrated in figure 8, the latter being, in fact, the solution for the limiting 
case rl -+ 0. 

From (6.9) and (6.10) we further obtain, restoring physical dimensions, 

Q 2x0r cos (p) 
, 2nr cos ~ 0 )  - n 

w; - (6.11) 

, (6.12) 
2x0r cos (p) 

Q +  n 2nr cos @) 
as n + co (i.e. t-> 0). 

Equations (6.1 1) and (6.12) clearly indicate that a negative velocity contribution is 
to be expected along the pressure side of the blades due to the revolution of the 
impeller. This is commonly interpreted as being the result of a relative eddy located 
between consecutive blades, which, basically, originates from the irrotationality of the 
absolute flow. Consequently, the relative flow possesses a constant vorticity equal to 
- 2 0  (i.e. V x w = -2Q). 

W t  - 

7. Analytical expressions for impeller design parameters 
The solutions given in the previous sections enable the derivation of analytical 

expressions for parameters which govern the performance of radial impellers in 
turbomachinery. Parameters concerned are prerotation and condition of shockless 
entry, delivered head or work, minimum volume flow rate to avoid reverse flow 
between the blades, pressure distribution along (pump) impeller blades, and dimensions 
required for impeller housings. Results for each of these parameters are presented 
below, considering pump and (radially bladed) turbine impellers separately. The 
findings presented provided an improvement and extension to the design formulae 
commonly applied in the engineering of radial turbomachinery, such formulae being 
largely based on the application of one-dimensional Eulerian flow theory. 

7.1. Results for pump impellers 
7.1.1. Prerotation and condition of shockless entry 

By giving the inlet flow the appropriate prerotation we have the possibility of 
realizing a shockless entry, for each operating point individually, so that impact losses 
can be minimized. At this point, however, attention will be confined to impellers fitted 
with straight radial blades, since only for this type of impeller have solutions in closed 
form been given with respect to the condition of shockless entry. 

From (5.28) we readily obtain the prerotation (I'J required to obtain a shockless 
5-2 
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entry for pump impellers fitted with straight radial blades, where the prerotation factor 
is given by (5.30). These equations enable exact evaluation of rls, but, since most 
impellers are characterized by ,u + 1 we may approximate asymptotically. 

Expanding the prerotation factor readily yields 

r p  - 241n(1 - 4,u+/n) 4 2 / n ,  2/n; 1 ; 1 - 4 , 4  (7.1 a) 

as pi+ 0, or (7.1 b) 

as pi + 0, provided that n > 4. 
The exact value (5.30) and asymptotic expansion (7.1 6) of the prerotation factor are 

illustrated in figures 9(a) and 9(b) respectively. Note that the prerotation factor is 
always larger than the Eulerian value of unity, and also that when the number of blades 
becomes infinitely large the prerotation factor becomes unity. 
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Furthermore, it is noted that, in general, the prerotation for pump impellers (not 
necessarily the shockless one) is bounded, that is there is a maximum value to be given 
to the prerotation. This arises from the fact that nf',, (representing, in fact, the 
mechanical work transferred to the fluid) has to be positive. With reference to (5.22) 
and (6.1) we then get the conditions 

(7.2a) 

for straight radial blades, and 

r, < crpB 27tar; + Q tan (J) (7.2b) 

as ,LL -f 0, for logarithmic spiral blades. 

7.1.2. Developed head and slip factors 

impeller this may be written conveniently as (see for instance Betz 1966, p. 84) 
First, we recollect Euler's turbine equation. For a circular cascade or isolated 

M = p Q N  
27t ' (7.3) 

in which M is torque, or moment, exerted on the impeller and p is fluid density. With 
r2-Tl = nr,, this then gives 

(7.4) 

for radial-flow pump impellers. 
Next assuming 100% efficiency, that is the mechanical work (MQ)  is transferred 

perfectly to the fluid, we obtain from the conservation of energy that the theoretically 
developed head (Hth) equals 

where g is the acceleration due to gravity. 
Then substituting (5.22) in (7.5) we get for radially bladed pump impellers 

r a  
gHt, = vpo(sZr2)2-vpr 

2n 

or, using dimensionless groups, 

yth = v.pB-(r1/r2)2vpT '1, (7.7) 
in which a head coefficient is introduced, defined by Yth = gHt,/(sZr2)2; the flow 
coefficient (@), vortex coefficient (TI), and slip factors (v) are as given before. 

Likewise, substituting (6.1) in (7.5) we obtain for pump impellers fitted with 
logarithmic spiral blades 

or, in dimensionless form, 

as p+Q.  
!Pth - vpJz + @ tan (J) - TI (7.9) 
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radial blades; (c) up* for loganthrnic spiral blades as p 4 0. 

Relations (7.5)-(7.9) clearly illustrate the importance of slip factors. Based on (5.23), 
(5.24), and (6.2) we have plotted the respective slip factors in figure 10 for several 
numbers of blades and various blade angles. It shows that increasing the blade angle, 
as well as the number of blades, will give slip factors closer to the Eulerian value of 
unity. Consequently, this yields a larger (theoretical) head, as can be seen from 
(7.5)-(7.9). 

Figure 10(a) has been given before by Schulz (1928a, b) and Spannhake (1930). To 
that end both Schulz and Spannhake derived a solution similar to (5.24). Figures 10(b) 
and 1O(c) have both been presented formerly by Busemann (1928). Busemann, 
however, obtained his results by numerical integration, considering a limited number 
of values for n and ,8 only, whereas figures 10(b) and 1O(c) are based on expressions 
in closed form, viz. (5.23) and (6.2), enabling direct evaluation for each value of n 
and ,8. 

Besides slip factors, Iike the ones just mentioned, another dimensionless group is 
often also seen in the engineering of turbomachines, namely the head reduction factor 
(HRF). This parameter is commonly defined as the ratio between the theoretical head 
and the Eulerian head. With (7.7) and (7.9) this gives for straight radial blades (i.e. 
H R 4 )  and logarithmic spiral blades (i.e. H R 5 )  respectively 

and 

as p+O. 

(7.10) 

(7.1 1) 
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FIGURE 11. Slip factor crpQ for pump impellers fitted with straight radial blades as p+O, together 
with that according to Kucharski (1918). 

Equation (7.1 1) indicates clearly that the head reduction factor is strongly flow- 
dependent, contrary to the concept of slip factors which depend only on the 
geometrical design of impellers; hence it is better to use slip factors. Note that the head 
reduction factor will be equal to the slip factor crpn in the special case of straight radial 
blades and zero prerotation, i.e. ,l? = 0 and TI = 0. 

Furthermore, referring to (6.3), it is noted that 

(7.12) 

as n + 00, and, consequently, B(x, 2) - B(Re {XI, Re {XI) = {T(Re (x) )12/r (2  Re {x)) as 
n - t  co. Hence, the evaluation of crPD as given by (6.2) can then be simplified to e.g. 

as n + a. Moreover, in the special case of straight radial blades (i.e. ,l? = 0) (7.12) holds 
exactly, and, hence 

1 f ( ; + 2 / n )  
g P R  - - & r( 1 + 2/n) (7.14) 

as p+O, for straight radial blades. 
The asymptotic solution (7.14) is plotted in figure 11. In this figure we have also 

plotted the slip factor gPn according to Kucharski (1918), who has been the only one 
thus far to formulate solutions in closed form analytically. To that end Kucharski 
imposed that circular streamlines connected the trailing edges at zero throughput; a 
simple but remarkably good assumption. 

Furthermore, to illustrate (7.9) we have plotted in figure 12 the head coefficient 
versus the flow coefficient for 60°, logarithmically bladed pump impellers with eight 
blades, receiving zero prerotation. In this figure we have also plotted the Eulerian head 
and the actual head as found from measurements (Elholm, Ayder & Braembussche 
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FIGURE 12. Head characteristic for 60", logarithmically bladed pump impeller with eight blades. 
having 100 mm outer radius, and receiving zero prerotation. 

1992). The figure clearly shows the limiting effect of finite blade numbers. In particular, 
it shows that the theoretical head lies notably below the Eulerian head. The remaining 
difference between the theoretical and the actual head is due to friction losses, impact 
losses, and off-design operation. The latter originates from the fact that the volute does 
not fit the impeller properly at off-design operation, which will be considered in this 
section after we have discussed the minimum flow coefficient. The impact losses can 
simply be reduced by giving the flow entering the impeller the proper prerotation, so 
that a shockless entry will be obtained. 

Lastly, completing the discussion of the subject, it should be noted that not only the 
references mentioned here, namely Kucharski (1 9 181, Busemann (1 928), Schulz 
(1 928 a, b), and Spannhake (1930), have explored the concept of slip occurring in radial 
impellers. A few others, partially reviewed by Wiesner (1967), have given approximate 
descriptions for rotational slip; their formulae, however, being mostly based on 
empiricism. 

7.1.3. Minimum Jrow coeficient 
Together with slip factors mentioned before we might also have to take into 

account another, equally important, design parameter, namely the minimum flow 
coefficient Qm. The minimum flow coefficient gives indirectly the lowest allowable 
throughput, so that there will be no reverse flow between impeller blades. Such reverse 
flow, expected to have a negative influence on pump performance, arises from the 
relative vorticity of the flow field (i.e. V x w = 2Q), which is related directly to the 
displacement flow. 

From (5.45) and (6.4), with the respective conditions w,, 2 0 and wsp 2 0 for all 
radii, it follows that minimum flow coefficients can be computed from 

x {2{R(0)}n ak sin (kB) +;(l -p) sin (0) $2,;; 1 ; (*TI} (7.15) 
k=l n n I+pz 
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for straight radial blades, and 

Qm(n, ,!?) - MAX(M1N) $(R(H)}2 sin (2p) - (cos (3'))1-4cosZ(P)'n e-2psin(zp)ln 

(h) straight radial blades. 

-x- z)9 < 0 < x-zp: 

spiral blades ; 

sin(2P++Bj n "  C Bk sin (kH + 2k,!?) - ~ C kC, sin (k0 + 2kp) 
cos(p+$3) k=l 2 cos CB) k=l  

x cotan (/3 + @) 

(7.16) 

as p+ 0, for logarithmical spiral blades, where MAX(M1Nj has to be interpreted as 
MAX if 52 > 0 and as MIN if 52 < 0;  the respective dimensionless radii, R(H), are given 
by (3.6) and (3.15) for straight radial and logarithmic spiral blades respectively. 

Additionally, putting ,!? = 0 we readily obtain from (7.16) 

(7.17) 
sin (k0) 

T(l + k + 2/nj T(l  - k + 2/n)  
@,(nj - MAX(M1N) 21-4/nr(1 + 4/n) 

- l l < O < l L  

as p -+ 0, for straight radial blades, which may also be derived directly using (5.3 1). 
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FIGURE 14. Logarithmically curved volute. 

The outcome of (7.16) and (7.17) is presented graphically in figure 13, where figure 
13(b) also shows the minimum flow coefficient as derived by Kucharski (1918). The 
figure clearly shows the positive effect of curvature; increasing the blade angle and the 
number of blades will give lower-valued minimum flow coefficients. Logically, the 
graphs of figure 13 can be used either to determine the lowest allowable volume flow 
rate or the minimum number of blades and the blade angle required so that reverse flow 
is avoided. 

7.1.4. Choice of volute 
The findings obtained so far for isolated impellers allow us also to make suggestions 

about volutes housing pump impellers. To that end we will adapt so-called 
logarithmically curved volutes, the curvature of which is, like a logarithmical spiral 
blade, simply described by (see also figure 14) 

(7.18) 

or $4) = +o + tan (a,) In (r /r2) ,  (7.19) 
where 

To compute the volute angle ctu we use the circulation/flux ratio of the flow leaving 
the impeller. With reference to figure 14 it follows that 

(7.20) 

where b,/b, is depth ratio of the volute. 
Next, using (4.25) and substituting respectively (5.22) and (6.1), equation (7.20) 

gives, employing a dimensionless notation 

r(+) = yo e(Q-Qo)/tan(G 

is volute angle, 4, is offset angle, and ra = r(+J 

tan (4 = b, r2/(bt Q), 

for straight radial blades, and 

tan (a,) - (%+tan - 1; 

(7.21) 

(7.22) 

as ,LA -+ 0, for logarithmical spiral blades. 
Relations (7.21) and (7.22) provide simple means to compute appropriate volute 

angles a,. The depth ratio bJb, gives the possibility of constructing small volutes, since 
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FIGLJRE 15. Pressure distribution along straight radial blades of eight-bladed impellers with inlet-to- 
outlet radius ratio of 0.37 (Gm = 0.319; Y,, = 0.214): (a) minimum volume flow rate and zero 
prerotation; (b )  minimum volume flow rate and shockless entry. 

at unit depth ratio, i.e. bJb2 = 1, most volutes would become excessively large. 
Alternatively, to avoid large volutes, it is possible to use more than one exhaust, since 
@ will be reduced inversely proportionally to the number of exhausts (say nez, so that 
@ K l/nez). Incidentally, the latter also improves the symmetry and periodicity of the 
volute flow. 

Furthermore, (7.21) and (7.22) clearly show that a particular volute will be suited for 
one operating point only, and, moreover, that the influence of limited blade numbers 
is incorporated through the appearance of slip factors. Consequently, volutes for 
finitely bladed pump impellers have to have larger volute angles than those designed 
according to one-dimensional Eulerian flow theory, where no account is taken of the 
occurrence of slip and, hence, circumferential fluid velocities are taken too large. 

7.1.5. Pressure distribution along impeller blades 

In the engineering of turbomachinery the pressure distribution along impeller blades 
plays a significant role. In particular, forces exerted on impellers, blade loading, and 
cavitation are of interest. 

The pressure distribution along the blades of the impellers can be computed 
immediately from the velocity distribution, using Bernoulli's theorem for steady two- 
dimensional fluid motions with respect to rotating axes. Neglecting body forces, the 
theorem reads (see for instance Batchelor 1967, p. 396, or Prandtl 1963, p. 347) 

p / p  + ;w2 - $(52r)2 = B, (7.23) 
in which p is thermodynamic pressure, p is fluid density, and B is (often referred to as 
Bernoulli's) constant. 

Introducing dimensionless groups, (7.23) can be written alternatively as 

C P +rC2 2 w  -iR2 = B* (7.24) 
where C, = p/ (pQ2ri ) ,  C, = w/(Qr2) ,  R = r / r2 ,  and B* = B/(Qr,)'. 

Based on the velocity distributions of figures 5 (c) and 5 ( d )  we have plotted in figures 
15 (a) and 15 (b) the pressure coefficient C, versus the blade coordinate s, where we have 
put B = 0 for convenience; the blade coordinate s, employed before, is related to the 
dimensionless radius R by R = s + (1 - s) r1/r2. 
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FIGURE 16. Pressure difference over straight radial blades of eight-bladed impellers with inlet-to- 
outlet radius ratio of 0.37 (Qm = 0.319; Yls = 0.214): (a) minimum volume flow rate and zero 
prerotation; (b )  minimum volume flow rate and shockless entry. 

Figure 15 demonstrates that the blade loading is concentrated near the inner tip, that 
is the pressure difference (AC, = Ci  - Cp) over a blade has its maximum near the inner 
tip. This phenomenon is even better reflected in figure 16, where we have plotted the 
pressure difference as a function of the blade coordinate. 

Also, to illustrate the positive influence of blade curvature with respect to the blade 
loading, we have computed the pressure distribution along logarithmical spiral blades, 
based on the velocity distributions of figure 8, with the respective minimum volume 
flow rate required superposed. The resulting pressure distributions and pressure 
differences are given in figures 17 and 18 respectively. The figures clearly indicate that 
blade curvature affects the blade loading favourably. 

7.2. Results ,for turbine impellers 
7.2.1. Delivered work and condition of shockless entry 

Employing Euler’s turbine equation, e.g. (7.3). it readily follows that the amount of 
work (3,) theoretically delivered by two-dimensional isolated hydraulic radial-inflow 
turbine impellers is given by 

Here, the outer circulation T2 represents the prerotation. This prerotation strongly 
determines the work to be delivered by radial-inflow turbine impellers. The inner 
circulation r,, being related directly to the angular momentum of the fluid at blade 
inner radius, is merely to be seen as a residual or loss of energy. In practice, however, 
modern turbine impellers are designed in such a way that this loss of momentum is 
avoided. This is achieved by curving impeller blades backwardly at the inner radius, or 
by deviating the flow axially at the impeller inner region and curving the blades 
appropriately. Although the present two-dimensional analysis is unsuited to specify the 
blade shapes required at the impeller inner region to accomplish this, in line with 
practice we set the second term in (7.25) equal to zero, so that 

(7.26) 
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Furthermore, to avoid impact losses, turbine impellers are usually operated under the 
condition of shockless entry. The prerotation rZs then required is prescribed by (5.42), 
which yields, after substitution in (7.26), for the amount of work delivered at shockless 
entry 

(7.27) 

in which the prerotation factor (TJ is prescribed by (5.44), which can be expanded 
asymptotically for the limiting case of pi + 0, yielding 

I .  

(7.28) 



138 F. C. Visser, J .  J .  H .  Brouwers and R. Badie 

I p=o I 

1 I 

0 0.25 0.50 0.75 1 .oo 
Radius, rIrz 

FIGURE 18. Pressure difference at minimum volume flow rate, over backwardly curved logarithmic 
spiral blades (52 < 0) of eight-bladed impellers as ,u + 0. 

Equation (7.28) provides a simple expression to compute the prerotation required 
for shockless entry. Figure 19(b) shows this prerotation factor as function of the 
number of blades. The exact value according to (5.44) is plotted in figure 19(a). 
Differences between the exact value and asymptotic expansion of T ~ ,  as depicted on the 
graphs of figure 19, reflect the influence of the centre configuration of the turbine 
impellers on the prerotation required to obtain shockless entry at the impeller outer 
radius. 

In practice, as stated before, blades of radial-inflow turbine impellers are usually 
curved at the centre or impeller outlet region. As long as this interior part is located 
in a region of radial extent r1 such that p is small, this section is not likely to have much 
influence on the condition of shockless entry, or on the flow in the impeller inlet region 
where thc blades are actually straight. In that case (7.28) can be applied well to assess 
the condition of shockless entry. 

Lastly, it is noted that the asymptotic expansion of the prerotation factor for 
shockless entry in radially bladed turbine impellers as given above resembles the slip 
factor gpR for a radially bladed pump impeller as p u 0 .  Likewise, for finite blade 
numbers it is smaller than unity, reflecting the remarkable fact - never before noticed 
(to the authors’ knowledge) - that for shockless entry the prerotation of the flow should 
be less than the one-dimensional Eulerian value derived from the circumferential 
velocity at the outer blade radius. 

7.2.2. A4 inirrzum $0 w coeficien t 
Since (7.15) and (7.17) are also valid for radially bladed turbine impellers, it directly 

follows that the minimum flow coefficient for radially bladed pump and turbine 
impellers will be identical. Hence, figure 15 is valid for both type of impellers as pi+ 
0. The only difference is that the turbines considered are characterized by radial inward 
flow, i.e. (2 < 0, whereas pumps have radial outward flow, i.e. Q > 0. 

When the throughput lies below the flow minimally required, both turbines and 
pumps will have reverse flow areas to the pressure side of the blades, located near the 



Irrotational and solenoida1,flow in pump and turbine impellers 

(a)  

0 0.2 0.4 0.6 0.8 1 .0 

139 

0 10 100 
Number of blades, n 

FIGURE 19. PTerotation factor for radially bladed turbine impellers: (a) exact value; (b) asymptotic 
solution as p + O .  Note that the values for T~ at r , / r z  = 0, given in (a), are equal to the values of 7t 

in (b). 

outer tip. Logically, this position results from the fact that the throughput velocity is 
inversely proportional to the radius. 

Furthermore, reverse flow will also occur a t  the leading edge of the blades when the 
condition of shockless entry is not fulfilled. This is entirely due to the singular 
behaviour of the velocity profile near the leading edge; see also figures 7(a) and 7(c). 

7.2.3. Impeller housing 
Assuming a logarithmically spiralled housing, fitted with inlet guide vanes if so 

desired, we adopt (7.20). Employing dimensionless groups we get (see also figure 14) 

b, y z  tan (a,) = -. 
h2 @ 

(7.29) 
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For shockless entry, i.e. Y, = 7,, which is usually desired, this becomes 
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(7.30) 

These relations provide a simple means to compute the curvature of radial-inflow 
turbine impeller housings, so that the flow will be given the desired prerotation. 
Furthermore, it is clearly shown by both equations that a particular housing will fit one 
volume flow rate only, since the prerotation factor is determined completely by the 
design of the impellers. 

8. Concluding remarks 
In the foregoing the irrotational and solenoidal flow in two-dimensionally modelled, 

radial-flow impellers fitted with equiangular blades has been analysed in detail. The 
general approach, including some features of the method of conformal mapping, as 
well as some of the intermediate or partial results presented, agrees with the works of, 
notably, Kucharski (1918), Spannhake (1925a, b, 1930), Busemann (1928), Acosta 
(1954), and Sorensen (1927, 1941). However, by extending the mathematical analysis, 
a number of new and previously unpublished results have been derived. These include 
exact solutions for the velocity distribution along impeller blades of radially bladed 
pump and turbine impellers, and solutions which hold asymptotically for log- 
arithmically bladed pump impellers as ( rJr2)n  -+ 0, where r1 is the impeller inner radius, 
rz is the impeller outer radius, and n is the number of blades. The respective solutions 
have been formulated in closed form, involving Fourier series with Fourier coefficients 
given by the Gauss hypergeometric function and beta function respectively. 

Based on the respective velocity distributions, new or improved expressions have 
been derived for parameters that are important for practical design of radial 
turbomachinery, and which reflect the two-dimensional nature of the flow field. In 
particular, expressions have been given for rotational slip of the flow leaving radial 
impellers, as well as for reverse flow between impeller blades and shockless flow at 
impeller entry, with the number of blades, blade curvature, and blade revolution 
as determinable variables. Furthermore, analytical extensions to classical one- 
dimensional Eulerian expressions for the developed head of pumps and delivered 
work of turbines have been given. 

Apart from the application to design, the results can serve as a practical reference for 
complex two- and quasi-three-dimensional, time-dependent, numerical potential flow 
calculations (Badie 1993). Moreover, they provide a well-defined starting point for 
further investigation of the flow behaviour in radial-flow impellers, such as boundary- 
layer calculations along impeller blades employing the potential flow solutions given 
here for (main-stream) velocity distributions, and experimental observation of 
situations of reverse flow between impeller blades. 

The authors wish to thank Professor L. van Wijngaarden (University of Twente) for 
his comments on some fundamental issues regarding the application of the method of 
conformal mapping for two-dimensional problems in fluid mechanics. 
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